工控网首页
>

应用设计

>

步进电机和伺服电机的比较

步进电机和伺服电机的比较

2007/11/2 14:10:00
步进电机作为一种数字式执行元件,在运动控制系统中得到广泛的应用。许多用户朋友在使用步进电机的时候,感觉电机工作时有较大的发热,心存疑虑,不知这种现象是否正常。实际上发热是步进电机的一个普遍现象,但怎样的发热程度才算正常,以及如何尽量减小步进电机发热呢?本文将对这些问题做一简单的分析。 1、 步进电机为什么会发热 对于各种步进电机而言,内部都是由铁芯和绕组线圈组成的。绕组有电阻,通电会产生损耗,损耗大小与电阻和电流的平方成正比,这就是我们常说的铜损,如果电流不是标准的直流或正弦波,还会产生谐波损耗;铁心有磁滞涡流效应,在交变磁场中也会产生损耗,其大小与材料,电流,频率,电压有关,这叫铁损。铜损和铁损都会以发热的形式表现出来,从而影响电机的效率。步进电机一般追求定位精度和力矩输出,效率比较低,电流一般比较大,且谐波成分高,电流交变的频率也随转速而变化,因而步进电机普遍存在发热情况,且情况比一般交流电机严重。 2、步进电机发热的合理范围: 电机发热允许到什么程度,主要取决于电机内部绝缘等级。内部绝缘性能在高温下(130度以上)才会被破坏。所以只要内部不超过130度,电机便不会损坏,而这时表面温度会在90度以下。所以,步进电机表面温度在70-80度都是正常的。简单的温度测量方法有用点温计的,也可以粗略判断:用手可以触摸1-2秒以上,不超过60度;用手只能碰一下,大约在70-80度;滴几滴水迅速气化,则90度以上了。 3、步进电机发热随速度变化的情况: 采用恒流驱动技术时,步进电机在静态和低速下,电流会维持相对恒定,以保持恒力矩输出。速度高到一定程度,电机内部反电势升高,电流将逐步下降,力矩也会下降。因此,因铜损带来的发热情况就与速度相关了。静态和低速时一般发热高,高速时发热低。但是铁损(虽然占的比例较小)变化的情况却不尽然,而电机整个的发热是二者之和,所以上述只是一般情况。 4、发热带来的影响: 电机发热虽然一般不会影响电机的寿命,对大多数客户来说没必要理会。但是,严重的发热会带来一些负面影响。如电机内部各部分热膨胀系数不同导致结构应力的变化和内部气隙的微小变化,会影响电机的动态响应,高速会容易失步。又如有些场合不允许电机的过度发热,如医疗器械和高精度的测试设备等。因此对电机的发热应当进行必要的控制。 5、如何减少电机的发热: 减少发热,就是减少铜损和铁损。 减少铜损有两个方向,减少电阻和电流,这就要求在选型时尽量选择电阻小和额定电流小的电机,对两相电机,能用串联的电机就不用并联电机。但是这往往与力矩和高速的要求相抵触。对于已经选定的电机,则应充分利用驱动器的自动半流控制功能和脱机功能,前者在电机处于静态时自动减少电流,后者干脆将电流切断。另外,细分驱动器由于电流波形接近正弦,谐波少,电机发热也会较少。 减少铁损的办法不多,电压等级与之有关,高压驱动的电机虽然会带来高速特性的提升,但也带来发热的增加。所以应当选择合适的驱动电压等级,兼顾高速性,平稳性和发热,噪音等指标。 和步进电机相比,伺服电机有以下几点优势: 1、实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; 2、高速性能好,一般额定转速能达到2000~3000转; 3、抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; 4、低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; 5、电机加减速的动态相应时间短,一般在几十毫秒之内; 6、发热和噪音明显降低。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数) 关于驱动器的细分原理及一些相关说明(转载) 在国外,对于步进系统,主要采用二相混合式步进电机及相应的细分驱动器。 但在国内,广大用户对“细分”还不是特别了解,有的只是认为,细分是为了提高精 度,其实不然,细分主要是改善电机的运行性能,现说明如下:步进电机的细分控制是由驱 动器精确控制步进电机的相电流来实现的,以二相电机为例,假如电机的额定相电流为3A, 如果使用常规驱动器(如常用的恒流斩波方式)驱动该电机,电机每运行一步,其绕组内的 电流将从0突变为3A或从3A突变到0,相电流的巨大变化,必然会引起电机运行的振动和噪 音。如果使用细分驱动器,在10细分的状态下驱动该电机,电机每运行一微步,其绕组内的 电流变化只有0.3A而不是3A,且电流是以正弦曲线规律变化,这样就大大的改善了电机的振 动和噪音,因此,在性能上的优点才是细分的真正优点。由于细分驱动器要精确控制电机的 相电流,所以对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。注意,国内有一 些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一 定要分清两者的本质不同: 1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平 滑”并不产生微步,而细分的微步是可以用 来精确定位的。 2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的 下降,相反,力矩会有所增加。 (一)步进电机的选择 步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。 1、步距角的选择 电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度 (三相电机)等。 2、静力矩的选择 步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸) 3、电流的选择 静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压) 4、力矩与功率换算 步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下: P= Ω•M Ω=2π•n/60 P=2πnM/60 其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿•米 P=2πfM/400(半步工作) 其中f为每秒脉冲数(简称PPS) (二)、应用中的注意点 1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。 2、步进电机最好不使用整步状态,整步状态时振动大。 3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值 ,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12伏的电压除12V恒压驱动外也可以采用其他驱动电源, 不过要考虑温升。 4、转动惯量大的负载应选择大机座号电机。 5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。 6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。 7、电机不应在振动区内工作,如若必须可通过改变电压、电流或加一些阻尼的解决。 8、电机在600PPS(0.9度)以下工作,应采用小电流、大电感、低电压来驱动。 9、应遵循先选电机后选驱动的原则。五、其他说明 有关低频振动、升降速、机械共振、工作往复运动的误差、平面圆弧X、Y插补误差以及其他问题。具体解决办法恕不便在此叙述,我厂用户可来电咨询,可根据具体情况解决。 不同厂家的电机在设计、使用材料及加工工艺方面差别很大,选用步进电机应注重可靠性而轻性能、重品质而轻价格。 最好采用同一生产厂家的控制器、驱动器和电机。这样便于最终客户的维护。
投诉建议

提交

查看更多评论
其他资讯

查看更多

AC705型交流电动机星三角起动控制原理图

载波频率对变频器及电机的影响

电动机全波能耗制动控制电路

变频器的一些问题

利用变频器实现大惯量拖动系统准确停车